DocumentCode :
2421465
Title :
A feature selection method based on minimizing generalization bounds of SVM via GA
Author :
Xu, J.Q. ; Yuan, Z.D.
Author_Institution :
Center of Math. & Phys. Teaching, Shanghai Inst. of Technol., China
fYear :
2003
fDate :
8-8 Oct. 2003
Firstpage :
996
Lastpage :
999
Abstract :
A method based on finding those features which minimizing a kind of generalization bounds of the SVM is presented. The searching can be efficiently implemented via genetic algorithm. The resulting algorithm is shown to be effective on both simulation datasets and the real cardiac pattern recognition.
Keywords :
cardiology; feature extraction; genetic algorithms; support vector machines; GA; SVM; feature selection method; generalization bounds; genetic algorithm; minimization; real cardiac pattern recognition; simulation datasets; support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control. 2003 IEEE International Symposium on
Conference_Location :
Houston, TX, USA
ISSN :
2158-9860
Print_ISBN :
0-7803-7891-1
Type :
conf
DOI :
10.1109/ISIC.2003.1254773
Filename :
1254773
Link To Document :
بازگشت