DocumentCode :
2426823
Title :
Knowledge Discovery in Signal Processing and Multi-media Color Image Segmentation Using Adaptive Mean Shift and Statistical Model-Based Method
Author :
Park, Jonghyun ; Anh, Lai Thi ; Lee, Gueesang
Author_Institution :
Chonnam Nat. Univ., Gwangju
Volume :
4
fYear :
2007
fDate :
24-27 Aug. 2007
Firstpage :
400
Lastpage :
404
Abstract :
This paper presents an automatic segmentation approach for natural images based on adaptive mean shift and a statistical model-based approach. We employ the adaptive mean shift to determine the number of modes in a mixture model and to detect their components each mixture mode. We consider the use of the EM algorithm, combined with mean field annealing theory, for parameter estimation by Markov random field models from unlabelled data in the Gaussian mixture model (GMM). Lastly, the color images are segmented by using posterior probability of each pixel computed from the GMM. The experiment shows that the method can effectively and automatically segment natural images without specifying the number of initial components in GMM.
Keywords :
Gaussian processes; Markov processes; expectation-maximisation algorithm; image colour analysis; image segmentation; probability; random processes; EM algorithm; Gaussian mixture model; Markov random field model; adaptive mean shift; color image segmentation; mean field annealing theory; parameter estimation; probability; statistical model; Adaptive signal processing; Annealing; Computer science; Gaussian distribution; Image analysis; Image color analysis; Image segmentation; Markov random fields; Parameter estimation; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on
Conference_Location :
Haikou
Print_ISBN :
978-0-7695-2874-8
Type :
conf
DOI :
10.1109/FSKD.2007.375
Filename :
4406420
Link To Document :
بازگشت