Title :
Imaye Restoration Usinr a Hybrid Fourier-Wavelet Domain Hidden Markov Model
Author :
Suliman, A. ; Li, Robert
Author_Institution :
Dept. of Electr. Eng., NC A&T State Univ., Greensboro, NC
Abstract :
We propose an efficient hybrid Fourier-Wavelet domain hidden Markov model. Fourier regularized deconvolution algorithm performs noise regularization using scalar shrinkage in the Fourier domain. The Fourier shrinkage exploit the Fourier transform´s economical representation of the colored noise inherent in deconvolution, whereas the hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of real-world data. The simplified model specifies the HMT parameters; and makes the model suitable for real-world applications.
Keywords :
Fourier transforms; deconvolution; hidden Markov models; image restoration; trees (mathematics); wavelet transforms; Fourier regularized deconvolution; Fourier transform; colored noise; hidden Markov model; hidden Markov tree; hybrid Fourier-wavelet domain; image restoration; noise regularization; scalar shrinkage; wavelet coefficients; AWGN; Additive white noise; Convolution; Deconvolution; Degradation; Gaussian noise; Hidden Markov models; Noise generators; Wavelet domain; Wiener filter;
Conference_Titel :
System Theory, 2007. SSST '07. Thirty-Ninth Southeastern Symposium on
Conference_Location :
Macon, GA
Print_ISBN :
1-4244-1126-2
Electronic_ISBN :
0094-2898
DOI :
10.1109/SSST.2007.352365