DocumentCode :
2432219
Title :
A new prewhitening-based adaptive filter which converges to the Wiener-solution
Author :
Rørtveit, Øyvind Lunde ; Husøy, John Hâkon
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Stavanger, Stavanger, Norway
fYear :
2009
fDate :
1-4 Nov. 2009
Firstpage :
1360
Lastpage :
1364
Abstract :
A fundamental problem with the Least Mean Squares (LMS) and Normalized LMS (NLMS) algorithms is their slow convergence given a colored input signal. For white input signals, on the other hand, these simple and popular algorithms yield quite satisfactory performance. There are a stunning number of different algorithms that try to deal with this problem, all of which, in some fashion, use decorrelation techniques for whitening the input. In most cases this leads to increased complexity compared to the 2M multiplications/sample, M being the filter length, of the LMS. Of algorithms that keep the complexity as low as 2M + K for some small K, perhaps the simplest and most popular approach is what is known as prewhitening: the use of a short decorrelation FIR filter on the input signal. In this paper we show that an inherent problem with the prewhitening-based algorithms is that they will not converge to the exact Wiener-solution in the mean if the true system is slightly nonlinear or if it is linear but with an impulse response longer than M - that is, in the undermodeling case. A new decorrelation-filter based algorithm with equally low computational complexity, which does converge to the Wiener solution in the mean is then presented. Theoretical results and simulations are provided to back up these claims.
Keywords :
FIR filters; adaptive filters; decorrelation; least mean squares methods; stochastic processes; Wiener-solution; colored input signal; computational complexity; decorrelation FIR filter-based algorithm; least mean squares algorithms; normalized LMS algorithms; prewhitening-based adaptive filter; white input signals; Adaptive filters; Computational complexity; Computational modeling; Computer science; Convergence; Decorrelation; Electronic mail; Equations; Finite impulse response filter; Least squares approximation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
978-1-4244-5825-7
Type :
conf
DOI :
10.1109/ACSSC.2009.5469890
Filename :
5469890
Link To Document :
بازگشت