DocumentCode :
243473
Title :
Directional Higher Order Information for Spatio-Temporal Trajectory Dataset
Author :
Ye Wang ; Kyungmi Lee ; Ickjai Lee
Author_Institution :
Div. of Tropical Environ. & Soc., James Cook Univ., Cairns, QLD, Australia
fYear :
2014
fDate :
14-14 Dec. 2014
Firstpage :
35
Lastpage :
42
Abstract :
Higher order information includes k-nearestneighbor information and k-order region information that are of great importance when the first order or lower order information is not functioning. Despite of the importance of direction in spatio-temporal analysis, directional higher order information has received almost no attention. This paper introduces a new directional higher order information dissimilarity measure that combines topological and geometrical information for spatio-temporal trajectories. It also presents a spider chart-like visualisation approach for directional higher order information and demonstrates the usefulness of this measure with a case study from top-k trajectory mining.
Keywords :
data analysis; data mining; data visualisation; pattern classification; directional higher order information dissimilarity measure; geometrical information; k-nearest neighbor information; k-order region information; spatio-temporal analysis; spatio-temporal trajectory dataset; spider chart-like visualisation approach; top-k trajectory mining; topological information; Australia; Conferences; Data structures; Distributed Bragg reflectors; Educational institutions; Generators; Trajectory; Higher order information; directional information; higher order Voronoi diagrams; spatio-temporal trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshop (ICDMW), 2014 IEEE International Conference on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4799-4275-6
Type :
conf
DOI :
10.1109/ICDMW.2014.48
Filename :
7022575
Link To Document :
بازگشت