DocumentCode :
2439273
Title :
A New Validity Index of Fuzzy c-Means Clustering
Author :
Zhang, Xin-Bo ; Jiang, Li
Author_Institution :
Coll. of Inf. & Electron. Eng., ZheJiang Gongshang Univ., Hangzhou, China
Volume :
2
fYear :
2009
fDate :
26-27 Aug. 2009
Firstpage :
218
Lastpage :
221
Abstract :
FCM algorithm is an important algorithm in fuzzy pattern identification. It has significant application value in theory and practice. And whether clustering results are reasonable or not is belongs to cluster validity problem. In this paper, based on the Shannon entropy and fuzzy variation theory, considering the geometry structure information of data sets, we give a new cluster validity function. Experimental results show that the new method has good classification performance.
Keywords :
fuzzy set theory; information theory; pattern clustering; Shannon entropy; cluster validity problem; fuzzy c-Means clustering algorithm; fuzzy pattern identification; fuzzy variation theory; Clustering algorithms; Cybernetics; Data analysis; Educational institutions; Entropy; Fuzzy sets; Fuzzy systems; Intelligent systems; Man machine systems; Partitioning algorithms; fuzzy c-means; fuzzy variation; partition entropy; validity index;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Human-Machine Systems and Cybernetics, 2009. IHMSC '09. International Conference on
Conference_Location :
Hangzhou, Zhejiang
Print_ISBN :
978-0-7695-3752-8
Type :
conf
DOI :
10.1109/IHMSC.2009.178
Filename :
5336004
Link To Document :
بازگشت