Title :
Sparse representations and Random Projections for robust and cancelable biometrics
Author :
Patel, Vishal M. ; Chellappa, Rama ; Tistarelli, Massimo
Author_Institution :
Center for Autom. Res., Univ. of Maryland, College Park, AK, USA
Abstract :
In recent years, the theories of Sparse Representation (SR) and Compressed Sensing (CS) have emerged as powerful tools for efficiently processing data in non-traditional ways. An area of promise for these theories is biométrie identification. In this paper, we review the role of sparse representation and CS for efficient biométrie identification. Algorithms to perform identification from face and iris data are reviewed. By applying Random Projections it is possible to purposively hide the biométrie data within a template. This procedure can be effectively employed for securing and protecting personal biométrie data against theft. Some of the most compelling challenges and issues that confront research in biometrics using sparse representations and CS are also addressed.
Keywords :
face recognition; iris recognition; biometric identification; cancelable biometrics; compressed sensing; face data; iris data; personal biometric data; random projections; robust biometrics; sparse representations; Dictionaries; Face; Face recognition; Iris recognition; Strontium; Training; Cancelable biometrics; Face recognition; Iris recognition; Random Projections; Sparse Representations;
Conference_Titel :
Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-7814-9
DOI :
10.1109/ICARCV.2010.5707955