DocumentCode :
2442457
Title :
A Jacobi-based parallel algorithm for matrix inverse computations
Author :
Tian Zhou ; Shuai Fang ; Xi Yang ; Zheng Li ; Qin Guo ; Bin Jiang
Author_Institution :
Sch. of Inf. Sci. & Eng., Southeast Univ., Nanjing, China
fYear :
2012
fDate :
25-27 Oct. 2012
Firstpage :
1
Lastpage :
5
Abstract :
In this paper we propose a faster variation of one-sided Jacobi algorithm. We bring the idea of Fast-Givens rotation and utilize it in Jacobi algorithm to generate a so-called Fast-onesided Jacobi algorithm, which can be utilized to calculate matrix inverse in parallel environment in a faster speed without losing any precision. Then, we give a simpler and faster variation of the new algorithm. We use Taylor expansion to approximate the parameter to avoid calculation of square roots. Numerical results are presented to validate the theoretical analysis.
Keywords :
Jacobian matrices; approximation theory; mathematics computing; parallel algorithms; Jacobi based parallel algorithm; Taylor expansion; fast givens rotation; matrix inverse calculation; matrix inverse computations; one sided Jacobi algorithm; parallel environment; square roots; DSP; Jacobi; SVD; Taylor; inverse; parallel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wireless Communications & Signal Processing (WCSP), 2012 International Conference on
Conference_Location :
Huangshan
Print_ISBN :
978-1-4673-5830-9
Electronic_ISBN :
978-1-4673-5829-3
Type :
conf
DOI :
10.1109/WCSP.2012.6542793
Filename :
6542793
Link To Document :
بازگشت