DocumentCode :
2442588
Title :
Probabilistic modeling of multi-level genetic regulatory logic
Author :
Noorbaloochi, Sharareh ; Barbe, Jose F. ; Tewfik, Ahmed H.
Author_Institution :
Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN
fYear :
2006
fDate :
28-30 May 2006
Firstpage :
83
Lastpage :
84
Abstract :
We propose a new class of models for genetic regulatory interactions that extends prior work by Bulashevska and Eils. Our model uses a probabilistic multi-level logic semantic framework to account for noisy biological processes and observed data. In particular, the expression levels of genes take more than two values and the evolution of the genetic regulatory network follows a hidden Markov model. We illustrate our model building procedure using an ´OR´ function.
Keywords :
genetics; hidden Markov models; probabilistic logic; genetic regulatory interaction; hidden Markov model; multi level genetic regulatory logic; noisy biological process; probabilistic modeling; Bayesian methods; Biological processes; Biological system modeling; Evolution (biology); Gene expression; Genetics; Hidden Markov models; Probabilistic logic; Probability; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Genomic Signal Processing and Statistics, 2006. GENSIPS '06. IEEE International Workshop on
Conference_Location :
College Station, TX
Print_ISBN :
1-4244-0384-7
Electronic_ISBN :
1-4244-0385-5
Type :
conf
DOI :
10.1109/GENSIPS.2006.353167
Filename :
4161788
Link To Document :
بازگشت