Title :
Voronoi-Based Geospatial Query Processing with MapReduce
Author :
Akdogan, Afsin ; Demiryurek, Ugur ; Banaei-Kashani, Farnoush ; Shahabi, Cyrus
Author_Institution :
Integrated Media Syst. Center, Univ. of Southern California, Los Angeles, CA, USA
fDate :
Nov. 30 2010-Dec. 3 2010
Abstract :
Geospatial queries (GQ) have been used in a wide variety of applications such as decision support systems, profile-based marketing, bioinformatics and GIS. Most of the existing query-answering approaches assume centralized processing on a single machine although GQs are intrinsically parallelizable. There are some approaches that have been designed for parallel databases and cluster systems, however, these only apply to the systems with limited parallel processing capability, far from that of the cloud-based platforms. In this paper, we study the problem of parallel geospatial query processing with the MapReduce programming model. Our proposed approach creates a spatial index, Voronoi diagram, for given data points in 2D space and enables efficient processing of a wide range of GQs. We evaluated the performance of our proposed techniques and correspondingly compared them with their closest related work while varying the number of employed nodes.
Keywords :
cloud computing; computational geometry; parallel processing; query processing; visual databases; MapReduce; Voronoi diagram; cloud computing; cluster systems; geospatial query processing; parallel databases; parallel processing; query-answering approaches; Artificial neural networks; Cloud computing; Generators; Geospatial analysis; Nearest neighbor searches; Query processing; Recurrent neural networks;
Conference_Titel :
Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on
Conference_Location :
Indianapolis, IN
Print_ISBN :
978-1-4244-9405-7
Electronic_ISBN :
978-0-7695-4302-4
DOI :
10.1109/CloudCom.2010.92