DocumentCode :
2445735
Title :
Model adaptation based on improved variance estimation for robust speech recognition
Author :
Yong Lu ; Zongyu Xu ; Qin Yan ; Lin Zhou
Author_Institution :
Coll. of Comput. & Inf. Eng, Hohai Univ., Nanjing, China
fYear :
2012
fDate :
25-27 Oct. 2012
Firstpage :
1
Lastpage :
4
Abstract :
This paper proposes a model adaptation algorithm based on improved variance estimation for noise robust speech recognition. In this algorithm, the approximate closed-form variance estimation is extended from the feature space to the model space and the dynamic parameters of the hidden Markov model (HMM) as well as the static parameters are converted to testing conditions. The experimental results show that the proposed model adaptation algorithm can converge quickly and outperforms the feature compensation method using the approximate closed-form variance estimation.
Keywords :
hidden Markov models; parameter estimation; speech recognition; HMM; approximate closed-form variance estimation; dynamic parameter estimation; feature compensation method; hidden Markov model; improved variance estimation; model adaptation algorithm; noise robust speech recognition; model adaptation; speech recognition; variance estimation; vector Taylor series;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wireless Communications & Signal Processing (WCSP), 2012 International Conference on
Conference_Location :
Huangshan
Print_ISBN :
978-1-4673-5830-9
Electronic_ISBN :
978-1-4673-5829-3
Type :
conf
DOI :
10.1109/WCSP.2012.6542942
Filename :
6542942
Link To Document :
بازگشت