DocumentCode :
2447353
Title :
HAMA: An Efficient Matrix Computation with the MapReduce Framework
Author :
Seo, Sangwon ; Yoon, Edward J. ; Kim, Jaehong ; Jin, Seongwook ; Kim, Jin-Soo ; Maeng, Seungryoul
Author_Institution :
Comput. Sci. Div., KAIST (Korea Adv. Inst. of Sci. & Technol.), Daejeon, South Korea
fYear :
2010
fDate :
Nov. 30 2010-Dec. 3 2010
Firstpage :
721
Lastpage :
726
Abstract :
Various scientific computations have become so complex, and thus computation tools play an important role. In this paper, we explore the state-of-the-art framework providing high-level matrix computation primitives with MapReduce through the case study approach, and demonstrate these primitives with different computation engines to show the performance and scalability. We believe the opportunity for using MapReduce in scientific computation is even more promising than the success to date in the parallel systems literature.
Keywords :
cloud computing; parallel processing; software architecture; HAMA; MapReduce framework; high level matrix computation; parallel systems literature; Context; Engines; Google; Iterative algorithm; Iterative methods; Scalability; Sparse matrices; MPI; MapReduce; Scientific computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on
Conference_Location :
Indianapolis, IN
Print_ISBN :
978-1-4244-9405-7
Electronic_ISBN :
978-0-7695-4302-4
Type :
conf
DOI :
10.1109/CloudCom.2010.17
Filename :
5708522
Link To Document :
بازگشت