DocumentCode :
2449909
Title :
Parameters-Optimized Multi-subswarms Particle Swarm Optimization
Author :
Yan, Yunyi ; Hu, Yingying ; Guo, Baolong
Author_Institution :
ICIE Inst. of Electro-Mech. Eng. Sch., Xidian Univ., Xi´´an, China
fYear :
2011
fDate :
14-16 Oct. 2011
Firstpage :
301
Lastpage :
305
Abstract :
Parameters-Optimized Multi-swarms Particle Swarm Optimization (POMS-PSO) is proposed in this paper. The POMS-PSO employs three subswarms totally, the C-swarm, r-subswarm and K-subswarm. The concept of parameter-optimization referred is realized by C-swarm to optimize the free parameters of the r- and K-subswarms using standard PSO. The problem-oriented optimization process is performed by r- and K-subswarm who take the advantage of r-selection and K-selection respectively. We assessed the performance of the POMS-PSO on a set of benchmark functions. The experimental result shows that POMS-PSO could help to optimize the evolution parameters and could improve the convergence precision.
Keywords :
evolutionary computation; parameter estimation; particle swarm optimisation; C-swarm; K-selection; K-subswarm; POMS-PSO; evolutionary parameter optimization; free parameter optimization; parameter-optimized multisubswarms particle swarm optimization; problem-oriented optimization process; r-selection; r-subswarm; Benchmark testing; Conferences; Convergence; Optimization; Particle swarm optimization; Pattern recognition; Programming; POMS-PSO; multi-subswarms; parameters-optimization; r- and K-selection; r/KPSO;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Soft Computing and Pattern Recognition (SoCPaR), 2011 International Conference of
Conference_Location :
Dalian
Print_ISBN :
978-1-4577-1195-4
Type :
conf
DOI :
10.1109/SoCPaR.2011.6089260
Filename :
6089260
Link To Document :
بازگشت