• DocumentCode
    2449909
  • Title

    Parameters-Optimized Multi-subswarms Particle Swarm Optimization

  • Author

    Yan, Yunyi ; Hu, Yingying ; Guo, Baolong

  • Author_Institution
    ICIE Inst. of Electro-Mech. Eng. Sch., Xidian Univ., Xi´´an, China
  • fYear
    2011
  • fDate
    14-16 Oct. 2011
  • Firstpage
    301
  • Lastpage
    305
  • Abstract
    Parameters-Optimized Multi-swarms Particle Swarm Optimization (POMS-PSO) is proposed in this paper. The POMS-PSO employs three subswarms totally, the C-swarm, r-subswarm and K-subswarm. The concept of parameter-optimization referred is realized by C-swarm to optimize the free parameters of the r- and K-subswarms using standard PSO. The problem-oriented optimization process is performed by r- and K-subswarm who take the advantage of r-selection and K-selection respectively. We assessed the performance of the POMS-PSO on a set of benchmark functions. The experimental result shows that POMS-PSO could help to optimize the evolution parameters and could improve the convergence precision.
  • Keywords
    evolutionary computation; parameter estimation; particle swarm optimisation; C-swarm; K-selection; K-subswarm; POMS-PSO; evolutionary parameter optimization; free parameter optimization; parameter-optimized multisubswarms particle swarm optimization; problem-oriented optimization process; r-selection; r-subswarm; Benchmark testing; Conferences; Convergence; Optimization; Particle swarm optimization; Pattern recognition; Programming; POMS-PSO; multi-subswarms; parameters-optimization; r- and K-selection; r/KPSO;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Soft Computing and Pattern Recognition (SoCPaR), 2011 International Conference of
  • Conference_Location
    Dalian
  • Print_ISBN
    978-1-4577-1195-4
  • Type

    conf

  • DOI
    10.1109/SoCPaR.2011.6089260
  • Filename
    6089260