Title :
On the capacity of noisy computations
Author_Institution :
CITI, Telecom SudParis, Evry, France
Abstract :
This paper presents an analysis of the concept of capacity for noisy computations, i.e. algorithms implemented by unreliable computing devices (e.g. noisy Turing Machines). The capacity of a noisy computation is defined and justified by companion coding theorems. Under some constraints on the encoding process, capacity is the upper bound of input rates allowing reliable computation, i.e. decodability of noisy outputs into expected outputs. A model of noisy computation of a perfect function f thanks to an unreliable device F is given together with a model of reliable computation based on input encoding and output decoding. A coding lemma (extending the Feinstein´s theorem to noisy computations), a joint source-computation coding theorem and its converse are proved. They apply if the input source, the function f, the noisy device F and the cascade f-1F induce AMS and ergodic one-sided random processes.
Keywords :
decoding; random codes; random processes; source coding; coding lemma; encoding process; ergodic one-sided random process; joint source-computation coding theorem; noisy computation model; noisy output decodability; noisy turing machine; reliable computation model; unreliable computing device; upper bound; Computational modeling; Decoding; Encoding; Noise measurement; Random processes; Reliability theory;
Conference_Titel :
Information Theory Workshop (ITW), 2011 IEEE
Conference_Location :
Paraty
Print_ISBN :
978-1-4577-0438-3
DOI :
10.1109/ITW.2011.6089373