DocumentCode :
2454545
Title :
Fixed-structure robust controller synthesis based on symbolic-numeric computation: design algorithms with a CACSD toolbox
Author :
Anai, Hirokazu ; Yanami, Hitoshi ; Hara, Shinji ; Sakabe, Kei
Author_Institution :
Fujitsu Lab. Ltd., Kawasaki, Japan
Volume :
2
fYear :
2004
fDate :
2-4 Sept. 2004
Firstpage :
1540
Abstract :
We propose a new method with a software tool for parametric robust control synthesis by symbolic-numeric computation. The method is a parameter space approach and it is especially effective for analysis and design of fixed structure controllers of rational type. The real quantifier elimination (QE), which is one of the recent progresses in the symbolic computation, plays a key role in our development The QE-based approach can uniformly deal with a lot of important design specifications for robust control such as frequency restricted H norm constraints, stability (gain/phase) margin and stability radius specifications, and pole location requirement by reducing such specifications to a particular type of formulas called a "sign definite condition (SDC)". This is also useful for improving the efficiency of QE computations since we can utilize an efficient QE algorithm specialized to the SDC. We have developed a MATLAB toolbox for robust parametric control based on a parameter space approach accomplished by QE. The QE-based parameter space approach and numerical simulation of specifications for specific controller parameter values taken from a controller parameter space are integrated conveniently in our toolbox with the assistance of a graphical user interface. This enables control engineers to achieve multi-objective robust controller synthesis smoothly. We also discuss how to merge the numerical computation and the symbolic operation to make our new design methods more efficient in practical control design.
Keywords :
control engineering computing; control system synthesis; graphical user interfaces; robust control; fixed-structure controller synthesis; graphical user interface; parameter space approach; quantifier elimination; robust control; sign definite condition; symbolic-numeric computation; Algorithm design and analysis; Control design; Design methodology; Frequency; Graphical user interfaces; MATLAB; Numerical simulation; Robust control; Robust stability; Software tools;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on
Print_ISBN :
0-7803-8633-7
Type :
conf
DOI :
10.1109/CCA.2004.1387594
Filename :
1387594
Link To Document :
بازگشت