• DocumentCode
    2454745
  • Title

    Improving Premise Structure in Evolving Takagi-Sugeno Neuro-Fuzzy Classifiers

  • Author

    Almaksour, Abdullah ; Anquetil, Eric

  • Author_Institution
    INSA de Rennes, Rennes, France
  • fYear
    2010
  • fDate
    12-14 Dec. 2010
  • Firstpage
    586
  • Lastpage
    591
  • Abstract
    We present in this paper a new method for the design of evolving neuro-fuzzy classifiers. The presented approach is based on a first-order Takagi-Sugeno neuro-fuzzy model. We propose a modification on the premise structure in this model and we provide the necessary learning formulas, with no problem-dependent parameters. We demonstrate by the experimental results the positive effect of this modification on the overall classification performance.
  • Keywords
    learning (artificial intelligence); pattern classification; Takagi-Sugeno neurofuzzy classifiers; first-order Takagi-Sugeno neurofuzzy model; learning formulas; Adaptation model; Clustering algorithms; Covariance matrix; Databases; Prototypes; Takagi-Sugeno model; Tuning; Incremental learning; Takagi-Sugeno; neuro-fuzzy;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Applications (ICMLA), 2010 Ninth International Conference on
  • Conference_Location
    Washington, DC
  • Print_ISBN
    978-1-4244-9211-4
  • Type

    conf

  • DOI
    10.1109/ICMLA.2010.91
  • Filename
    5708890