Title :
Community Detection with Edge Content in Social Media Networks
Author :
Qi, Guo-Jun ; Aggarwal, Charu C. ; Huang, Thomas
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
Abstract :
The problem of community detection in social media has been widely studied in the social networking community in the context of the structure of the underlying graphs. Most community detection algorithms use the links between the nodes in order to determine the dense regions in the graph. These dense regions are the communities of social media in the graph. Such methods are typically based purely on the linkage structure of the underlying social media network. However, in many recent applications, edge content is available in order to provide better supervision to the community detection process. Many natural representations of edges in social interactions such as shared images and videos, user tags and comments are naturally associated with content on the edges. While some work has been done on utilizing node content for community detection, the presence of edge content presents unprecedented opportunities and flexibility for the community detection process. We will show that such edge content can be leveraged in order to greatly improve the effectiveness of the community detection process in social media networks. We present experimental results illustrating the effectiveness of our approach.
Keywords :
graph theory; social networking (online); community detection algorithms; edge content; edge natural representations; graph dense regions; social media networks; social networking community; underlying graph structure; Clustering algorithms; Communities; Couplings; Image edge detection; Media; Social network services; Vectors; ignore;
Conference_Titel :
Data Engineering (ICDE), 2012 IEEE 28th International Conference on
Conference_Location :
Washington, DC
Print_ISBN :
978-1-4673-0042-1
DOI :
10.1109/ICDE.2012.77