DocumentCode :
2458060
Title :
On the adaptive control of a class of partially observed Markov decision processes
Author :
Hsu, Shun-Pin ; Chuang, Dong-Ming ; Arapostathis, Ari
Author_Institution :
Electr. Eng., Nat. Chung-Hsing Univ., Taichung, Taiwan
fYear :
2009
fDate :
10-12 June 2009
Firstpage :
5635
Lastpage :
5640
Abstract :
We study the adaptive control problems of a class of discrete-time partially observed Markov decision processes whose transition kernels are parameterized by a unknown vector. Given a sequence of parameter estimates converging to the true value with probability 1, we propose an adaptive control policy and show that under some conditions this policy is self-optimizing in the long-run average sense.
Keywords :
Markov processes; adaptive control; decision theory; discrete time systems; parameter estimation; probability; adaptive control problems; discrete-time partially observed Markov decision processes; parameter estimation; probability; transition kernels; Adaptive control; Control systems; Costs; Kernel; Maximum likelihood detection; Nonlinear filters; Parameter estimation; Stochastic processes; Uncertain systems; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2009. ACC '09.
Conference_Location :
St. Louis, MO
ISSN :
0743-1619
Print_ISBN :
978-1-4244-4523-3
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2009.5159826
Filename :
5159826
Link To Document :
بازگشت