Title : 
Singer-Dependent Falsetto Detection for Live Vocal Processing Based on Support Vector Classification
         
        
            Author : 
Mysore, Gautham J. ; Cassidy, Ryan J. ; Smith, Julius O., III
         
        
            Author_Institution : 
Center for Comput. Res. in Music & Acoust. (CCRMA), Stanford Univ., Stanford, CA
         
        
        
            fDate : 
Oct. 29 2006-Nov. 1 2006
         
        
        
        
            Abstract : 
We present and analyze a machine learning technique to determine from an input sung vocal waveform if falsetto (also known as the head voice) is being used. Such a system may be used to tune signal processing parameters, ideally in real-time, for such applications as intelligibility enhancement of high-pitched sung notes, and other musical systems which tune signal processing parameters according to detected performance parameters. Our falsetto detector uses a support vector classifier trained on mel-frequency cepstral coefficients (MFCCs) computed from a newly collected database of anechoic sung notes. It is shown to give correct classification with better than 95% accuracy.
         
        
            Keywords : 
acoustic signal processing; audio signal processing; cepstral analysis; learning (artificial intelligence); music; support vector machines; head voice; high-pitched sung notes; intelligibility enhancement; live vocal processing; machine learning; mel-frequency cepstral coefficients; musical signal processing; signal processing parameters; singer-dependent falsetto detection; support vector classification; Acoustic signal detection; Acoustic waves; Databases; Detectors; Frequency; Machine learning; Magnetic heads; Music; Signal processing; Speech analysis;
         
        
        
        
            Conference_Titel : 
Signals, Systems and Computers, 2006. ACSSC '06. Fortieth Asilomar Conference on
         
        
            Conference_Location : 
Pacific Grove, CA
         
        
        
            Print_ISBN : 
1-4244-0784-2
         
        
            Electronic_ISBN : 
1058-6393
         
        
        
            DOI : 
10.1109/ACSSC.2006.354932