Title :
Electrical battery model for use in dynamic electric vehicle simulations
Author :
Kroeze, Ryan C. ; Krein, Philip T.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL
Abstract :
Simulation of electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles over driving schedules within a full dynamic hybrid and electric vehicle simulator requires battery models capable of predicting state-of-charge, I-V characteristics, and dynamic behavior of different battery types. A battery model capable of reproducing lithium-ion, nickel-metal hydride, and lead- acid I-V characteristics (with minimal model alterations) is proposed. A battery-testing apparatus was designed to measure the proposed parameters of the battery model for all three battery types and simulate driving schedules with a programmed source and load configuration. A multiple time-constant battery model was used for modeling lithium- ion batteries; verification of time constants in the seconds to minutes and hour ranges has been shown in numerous research articles and a time constant in the millisecond range is verified here with experiments. Lack of significant time constants in the millisecond range is validated through direct testing. A modeled capacity-rate effect within the state-of-charge determination portion of the proposed model is verified experimentally to ensure accurate prediction of battery state of charge after lengthy driving schedules. The battery model was programmed into a Matlab/Simulink environment and used as a power source for plug-in hybrid electric vehicle simulations. Results from simulations of lithium-ion battery packs show that the proposed battery model behaves well with the other subcomponents of the vehicle simulator; accuracy of the model and prediction of battery internal losses depends on the extent of tests performed on the battery used for the simulation. Extraction of model parameters and their dependence on temperature and cycle number is ongoing, as well as validation of the Simulink model with hardware- in-the-loop "driving schedule" cycling of real batteries.
Keywords :
hybrid electric vehicles; lithium; secondary cells; test equipment; Matlab/Simulink; battery internal losses; battery-testing apparatus; capacity-rate effect; driving schedule; dynamic electric vehicle simulations; electrical battery model; hardware- in-the-loop; lithium- ion batteries; multiple time-constant battery model; plug-in hybrid electric vehicles; state-of-charge; state-of-charge determination; Battery charge measurement; Battery powered vehicles; Dynamic scheduling; Electric vehicles; Hybrid electric vehicles; Lithium compounds; Mathematical model; Predictive models; Testing; Vehicle dynamics; battery model; lithium-ion battery; plug-in hybrid electric vehicle; vehicle simulator;
Conference_Titel :
Power Electronics Specialists Conference, 2008. PESC 2008. IEEE
Conference_Location :
Rhodes
Print_ISBN :
978-1-4244-1667-7
Electronic_ISBN :
0275-9306
DOI :
10.1109/PESC.2008.4592119