Title :
An Inverse Eigenvalue Problem for Symmetric Arrow-Plus-Jacobi Matrices
Author :
Liu, Zhibing ; Qu, Dong ; Lu, Linzhang
Author_Institution :
Coll. of Sci., Jiujiang Univ., Jiujiang, China
Abstract :
In this paper we study a kind of inverse eigenvalue problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the( p, p )station, 1 ≤p ≤ n. We give a necessary and sufficient condition for the existence of such a matrix. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.
Keywords :
Jacobian matrices; eigenvalues and eigenfunctions; inverse eigenvalue problem; symmetric Arrow plus Jacobi matrices; symmetric matrices; Educational institutions; Eigenvalues and eigenfunctions; Inverse problems; Jacobian matrices; Presses; Sufficient conditions; Symmetric matrices; Eigenvalue; Matrix inverse eigenvalue problem; Symmetric Arrow-plus-Jacobi matrix;
Conference_Titel :
Computational and Information Sciences (ICCIS), 2010 International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-8814-8
Electronic_ISBN :
978-0-7695-4270-6
DOI :
10.1109/ICCIS.2010.190