DocumentCode :
2461498
Title :
OptiMUSIG: An Optimized Gray Level Image Segmentor
Author :
De, Sourav ; Bhattacharyya, Siddhartha ; Dutta, Paramartha
Author_Institution :
Dept. of Comput. Sci. & Inf. Technol., Univ. Inst. of Technol., Burdwan
fYear :
2008
fDate :
14-17 Dec. 2008
Firstpage :
78
Lastpage :
87
Abstract :
A multilevel sigmoidal (MUSIG) activation function is efficient in segmenting multilevel images. The function uses equal and fixed class responses, assuming the homogeneity of image information content. In this article, a novel approach for generating optimized class responses of the MUSIG activation function, is proposed. Three different types of objective function are used to measure the quality of the segmentation in the proposed genetic algorithm based optimization method. Results of segmentation of two real life images by the optimized MUSIG (OptiMUSIG) activation function with optimized class responses show better performances over the MUSIG activation function with equal and fixed responses.
Keywords :
genetic algorithms; image segmentation; OptiMUSIG; genetic algorithm; gray level image segmentor; multilevel images; multilevel sigmoidal activation function; objective function; Application software; Brightness; Data mining; Discrete wavelet transforms; Extraterrestrial measurements; Feature extraction; Image segmentation; Magnetic resonance imaging; Multi-layer neural network; Pixel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computing and Communications, 2008. ADCOM 2008. 16th International Conference on
Conference_Location :
Chennai
Print_ISBN :
978-1-4244-2962-2
Electronic_ISBN :
978-1-4244-2963-9
Type :
conf
DOI :
10.1109/ADCOM.2008.4760431
Filename :
4760431
Link To Document :
بازگشت