Title :
Ten-fold Improvement in Visual Odometry Using Landmark Matching
Author :
Zhu, Zhiwei ; Oskiper, Taragay ; Samarasekera, Supun ; Kumar, Rakesh ; Sawhney, Harpreet S.
Author_Institution :
Sarnoff Corp., Princeton
Abstract :
Our goal is to create a visual odometry system for robots and wearable systems such that localization accuracies of centimeters can be obtained for hundreds of meters of distance traveled. Existing systems have achieved approximately a 1% to 5% localization error rate whereas our proposed system achieves close to 0.1% error rate, a ten-fold reduction. Traditional visual odometry systems drift over time as the frame-to-frame errors accumulate. In this paper, we propose to improve visual odometry using visual landmarks in the scene. First, a dynamic local landmark tracking technique is proposed to track a set of local landmarks across image frames and select an optimal set of tracked local landmarks for pose computation. As a result, the error associated with each pose computation is minimized to reduce the drift significantly. Second, a global landmark based drift correction technique is proposed to recognize previously visited locations and use them to correct drift accumulated during motion. At each visited location along the route, a set of distinctive visual landmarks is automatically extracted and inserted into a landmark database dynamically. We integrate the landmark based approach into a navigation system with 2 stereo pairs and a low-cost inertial measurement unit (IMU) for increased robustness. We demonstrate that a real-time visual odometry system using local and global landmarks can precisely locate a user within 1 meter over 1000 meters in unknown indoor/outdoor environments with challenging situations such as climbing stairs, opening doors, moving foreground objects etc..
Keywords :
image matching; image motion analysis; pose estimation; robot vision; tracking; wearable computers; dynamic local landmark tracking technique; landmark database; pose computation; robot visual odometry system; visual landmark matching; wearable systems; Cameras; Error analysis; Error correction; Layout; Measurement units; Navigation; Robots; Sensor systems; Stereo vision; Visual databases;
Conference_Titel :
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on
Conference_Location :
Rio de Janeiro
Print_ISBN :
978-1-4244-1630-1
Electronic_ISBN :
1550-5499
DOI :
10.1109/ICCV.2007.4409062