DocumentCode :
2462316
Title :
Out-of-Core Bundle Adjustment for Large-Scale 3D Reconstruction
Author :
Ni, Kai ; Steedly, Drew ; Dellaert, Frank
Author_Institution :
Georgia Inst. of Technol., Atlanta
fYear :
2007
fDate :
14-21 Oct. 2007
Firstpage :
1
Lastpage :
8
Abstract :
Large-scale 3D reconstruction has recently received much attention from the computer vision community. Bundle adjustment is a key component of 3D reconstruction problems. However, traditional bundle adjustment algorithms require a considerable amount of memory and computational resources. In this paper, we present an extremely efficient, inherently out-of-core bundle adjustment algorithm. We decouple the original problem into several submaps that have their own local coordinate systems and can be optimized in parallel. A key contribution to our algorithm is making as much progress towards optimizing the global non-linear cost function as possible using the fragments of the reconstruction that are currently in core memory. This allows us to converge with very few global sweeps (often only two) through the entire reconstruction. We present experimental results on large-scale 3D reconstruction datasets, both synthetic and real.
Keywords :
image reconstruction; 3D reconstruction; computer vision; image reconstruction; nonlinear cost function; out-of-core bundle adjustment; submaps; Application software; Cameras; Computer vision; Concurrent computing; Cost function; Earth; Educational institutions; Image reconstruction; Large-scale systems; Layout;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on
Conference_Location :
Rio de Janeiro
ISSN :
1550-5499
Print_ISBN :
978-1-4244-1630-1
Electronic_ISBN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2007.4409085
Filename :
4409085
Link To Document :
بازگشت