Title :
Optimal filtering over linear observations with unknown parameters
Author :
Basin, Michael ; Calderon-Alvarez, Dario
Author_Institution :
Dept. of Phys. & Math. Sci., Autonomous Univ. of Nuevo Leon, San Nicolas de los Garza, Mexico
Abstract :
This paper presents the optimal filtering and parameter identification problem for linear stochastic systems over linear observations with unknown parameters, where the unknown parameters are considered Wiener processes. The original problem is reduced to the filtering problem for an extended state vector that incorporates parameters as additional states. The resulting filtering system is bilinear in state and linear in observations. The obtained optimal filter for the extended state vector also serves as the optimal identifier for the unknown parameters. Performance of the designed optimal state filter and parameter identifier is verified for both, positive and negative, parameter values.
Keywords :
control system synthesis; filtering theory; linear systems; optimal control; parameter estimation; stochastic processes; stochastic systems; Wiener process; extended state vector; linear observations; optimal filtering; parameter identification problem; stochastic systems; Equations; Filtering; Linear systems; Maximum likelihood estimation; Nonlinear filters; Nonlinear systems; Parameter estimation; State estimation; Stochastic systems; Vectors;
Conference_Titel :
American Control Conference, 2009. ACC '09.
Conference_Location :
St. Louis, MO
Print_ISBN :
978-1-4244-4523-3
Electronic_ISBN :
0743-1619
DOI :
10.1109/ACC.2009.5160024