DocumentCode :
2463424
Title :
Set membership state and parameter estimation for nonlinear differential equations with sparse discrete measurements
Author :
Marvel, Skylar W. ; Williams, Cranos M.
Author_Institution :
Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA
fYear :
2012
fDate :
14-17 Oct. 2012
Firstpage :
72
Lastpage :
77
Abstract :
This paper presents a method to perform parameter and state estimation in a bounded-error context for nonlinear continuous-time systems with sparse, discrete measurements. Direct application of a guaranteed parameter estimation method can be fruitless when few data measurements are available. This lack of measurements results in what we term “phantom” sets of parameter values that cannot be correctly discarded due to instability in the estimation method caused by the lack of information. Preprocessing the measurements through the addition of application specific stabilizing bounds vastly improves bounded parameter and state estimations. Comparisons between applying guaranteed estimation methods to raw and preprocessed data measurements are illustrated with an example application.
Keywords :
nonlinear differential equations; parameter estimation; set theory; state estimation; bounded-error context; estimation method; nonlinear continuous-time system; nonlinear differential equation; parameter estimation; phantom set; set membership state; sparse discrete measurement; state estimation; Biological system modeling; Biological systems; Mathematical model; Parameter estimation; Phantoms; State estimation; Time measurement; bounded noise; continuous time systems; discrete measurements; nonlinear systems; parameter estimation; state estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4673-1713-9
Electronic_ISBN :
978-1-4673-1712-2
Type :
conf
DOI :
10.1109/ICSMC.2012.6377679
Filename :
6377679
Link To Document :
بازگشت