DocumentCode :
2464724
Title :
Solving Symbolic Regression Problems Using Incremental Evaluation In Genetic Programming
Author :
Tuan-Hao, Hoang ; McKay, R.I. ; Essam, Daryl ; Hoai, Nguyen Xuan
Author_Institution :
New South Wales Univ., Canberra
fYear :
0
fDate :
0-0 0
Firstpage :
2134
Lastpage :
2141
Abstract :
In this paper, we show some experimental results using incremental evaluation with tree adjoining grammar guided genetic programming (DEVTAG) on two symbolic regression problems, a benchmark polynomial fitting problem in genetic programming, and a Fourier series problem (sawtooth problem). In our pilot study, we compare results with standard genetic programming (GP) and the original tree adjoining grammar guided genetic programming (TAG3P). Our results on the two problems are good, outperforming both standard GP and the original TAG3P.
Keywords :
Fourier series; genetic algorithms; learning (artificial intelligence); regression analysis; trees (mathematics); Fourier series problem; benchmark polynomial fitting problem; incremental evaluation; symbolic regression problems; tree adjoining grammar guided genetic programming; Australia; Biological system modeling; Digital circuits; Evolution (biology); Fourier series; Genetic mutations; Genetic programming; Polynomials; Regression tree analysis; Technical Activities Guide -TAG;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9487-9
Type :
conf
DOI :
10.1109/CEC.2006.1688570
Filename :
1688570
Link To Document :
بازگشت