Title : 
Interval methods for root-finding of nonlinear equations of one variable
         
        
        
            Author_Institution : 
Polytech. Sch., State Univ. of Pernambuco, Recife, Brazil
         
        
        
        
        
        
            Abstract : 
Interval analysis has proven successful for finding a root ξ of a nonlinear equation f(x)=0 in the interval [a,b]. The classical version of interval Newton´s method and more three new (supposed) interval methods has been tested on a series of examples. The Regula Falsi-Newton hybrid interval method and Halley´s (two versions) interval method are competitive when compared with the interval Newton´s method (used version). The numerical results empirically show that all methods give us verified computations (self-validating), ensuring that the exact value is certain to belong to the intervals computed.
         
        
            Keywords : 
Newton method; nonlinear equations; Halley interval method; Regula Falsi-Newton hybrid interval method; interval Newton method; interval method; nonlinear equation; root finding; Approximation algorithms; Convergence; Mathematical model; Newton method; Nonlinear equations; Presses; interval analysis; interval computing; nonlinear equations; root-finding;
         
        
        
        
            Conference_Titel : 
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on
         
        
            Conference_Location : 
Seoul
         
        
            Print_ISBN : 
978-1-4673-1713-9
         
        
            Electronic_ISBN : 
978-1-4673-1712-2
         
        
        
            DOI : 
10.1109/ICSMC.2012.6377763