Title :
On a Regular Fractional Sturm-Liouville Problem with derivatives of order in (0,1)
Author :
Klimek, Malgorzata ; Agrawal, Om P.
Author_Institution :
Inst. of Math., Czestochowa Univ. of Technol., Czestochowa, Poland
Abstract :
In this paper, we define a Fractional Sturm-Liouville Operator (FSLO), introduce a regular Fractional Sturm-Liouville Problem (FSLP), and investigate the properties of the eigenfunctions and the eigenvalues of the operator. We demonstrate that these properties are similar and in some cases identical to those for Integer Sturm-Liouville Operator. We briefly introduce a Reflected Fractional Sturm-Liouville Operator (RFSLO) and demonstrate that neither the FSLO nor the RFSLO are symmetric. We shall consider the topic of reflection symmetry in a subsequent paper.
Keywords :
eigenvalues and eigenfunctions; linear differential equations; FSLO; FSLP; RFSLO; eigenfunction properties; fractional Sturm-Liouville operator; linear differential equation; order derivatives; reflected fractional Sturm-Liouville operator; regular fractional Sturm-Liouville problem; Boundary conditions; Differential equations; Eigenvalues and eigenfunctions; Equations; Mathematical model; USA Councils; boundary value problems; eigenvalues and eigenfunctions; fractional calculus;
Conference_Titel :
Carpathian Control Conference (ICCC), 2012 13th International
Conference_Location :
High Tatras
Print_ISBN :
978-1-4577-1867-0
DOI :
10.1109/CarpathianCC.2012.6228655