DocumentCode :
2466333
Title :
Learning from negative example in relevance feedback for content-based image retrieval
Author :
Kherfi, M.L. ; Ziou, D. ; Bernardi, A.
Author_Institution :
CoRIMedia, Sherbrooke Univ., Que., Canada
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
933
Abstract :
In this paper, we address some issues related to the combination of positive and negative examples to perform more efficient image retrieval. We analyze the relevance of negative example and how it can be interpreted. Then we propose a new relevance feedback model that integrates both positive and negative examples. First, a query is formulated using positive example, then negative example is used to refine the system´s response. Mathematically, relevance feedback is formulated as an optimization of intra and inter variances of positive and negative examples.
Keywords :
content-based retrieval; image retrieval; learning by example; relevance feedback; content-based image retrieval; learning from negative example; relevance feedback; Content based retrieval; Ellipsoids; Image databases; Image retrieval; Matrix decomposition; Negative feedback; Radio frequency; Radiofrequency identification; Shape; Spatial databases;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2002. Proceedings. 16th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-1695-X
Type :
conf
DOI :
10.1109/ICPR.2002.1048458
Filename :
1048458
Link To Document :
بازگشت