DocumentCode :
2468842
Title :
Partitioning fuzzy clustering algorithms for mixed feature-type symbolic data
Author :
de A T de Carvalho, Francisco ; Cambuim, Lucas F S
Author_Institution :
Centro de Inf., Cidade Univ., Recife, Brazil
fYear :
2012
fDate :
14-17 Oct. 2012
Firstpage :
1385
Lastpage :
1390
Abstract :
This paper presents partitioning fuzzy clustering algorithms for mixed feature-type symbolic data. The proposed algorithms need a previous pre-processing step in order to obtain a suitable homogenization of the mixed feature-type symbolic data into histogram-valued symbolic data. These fuzzy clustering algorithms give a fuzzy partition and a prototype for each fuzzy cluster by optimizing an adequacy criterion based on suitable adaptive and non-adaptive Euclidean distances between vectors of histogram-valued data. The adaptive Euclidean distances change at each algorithm iteration and are different from one fuzzy cluster to another. Experiments with real mixed feature-type symbolic data sets show the usefulness of these fuzzy clustering algorithms.
Keywords :
fuzzy set theory; iterative methods; pattern clustering; adaptive Euclidean distances; adequacy criterion; fuzzy clustering algorithms; fuzzy partition; histogram-valued symbolic data; iteration algorithm; mixed feature-type symbolic data; Algorithm design and analysis; Clustering algorithms; Equations; Mathematical model; Partitioning algorithms; Prototypes; Vectors; Adaptive distances; Fuzzy clustering; Histogram-valued data; Mixed feature-type symbolic data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4673-1713-9
Electronic_ISBN :
978-1-4673-1712-2
Type :
conf
DOI :
10.1109/ICSMC.2012.6377927
Filename :
6377927
Link To Document :
بازگشت