Title :
Convolution particle filtering for parameter estimation in general state-space models
Author :
Campillo, Fabien ; Rossi, Vivien
Author_Institution :
INRIA/IRISA, Rennes
Abstract :
The state-space modeling of partially observed dynamic systems generally requires estimates of unknown parameters. From a practical point of view, it is relevant in such filtering contexts to simultaneously estimate the unknown states and parameters. Efficient simulation-based methods using convolution particle filters are proposed. The regularization properties of these filters is well suited, given the context of parameter estimation. Firstly the usual non Bayesian statistical estimates are considered: the conditional least squares estimate (CLSE) and the maximum likelihood estimate (MLE). Secondly, in a Bayesian context, a Monte Carlo type method is presented. Finally we present a simulated case study
Keywords :
Bayes methods; filtering theory; hidden Markov models; maximum likelihood estimation; parameter estimation; particle filtering (numerical methods); state-space methods; conditional least squares estimation; convolution kernels; convolution particle filtering; hidden Markov model; maximum likelihood estimation; nonBayesian statistical estimation; parameter estimation; partially observed dynamic systems; state-space modeling; Bayesian methods; Convolution; Filtering; Hidden Markov models; Least squares approximation; Maximum likelihood estimation; Monte Carlo methods; Parameter estimation; Particle filters; State estimation; Hidden Markov model; conditional least squares estimate; convolution kernels; maximum likelihood estimate; parameter estimation; particle filter;
Conference_Titel :
Decision and Control, 2006 45th IEEE Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
1-4244-0171-2
DOI :
10.1109/CDC.2006.376751