• DocumentCode
    2469017
  • Title

    Probabilistic interval-valued computation: toward a practical surrogate for statistics inside CAD tools

  • Author

    Singhee, Amith ; Fang, Claire F. ; Ma, James D. ; Rutenbar, Rob A.

  • Author_Institution
    Dept. of ECE, Carnegie Mellon Univ., Pittsburgh, PA
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    167
  • Lastpage
    172
  • Abstract
    Interval methods offer a general, fine-grain strategy for modeling correlated range uncertainties in numerical algorithms. We present a new, improved interval algebra that extends the classical affine form to a more rigorous statistical foundation. Range uncertainties now take the form of confidence intervals. In place of pessimistic interval bounds, we minimize the probability of numerical "escape"; this can tighten interval bounds by 10times, while yielding 10-100times speedups over Monte Carlo. The formulation relies on three critical ideas: liberating the affine model from the assumption of symmetric intervals; a unifying optimization formulation; and a concrete probabilistic model. We refer to these as probabilistic intervals, for brevity. Our goal is to understand where we might use these as a surrogate for expensive, explicit statistical computations. Results from sparse matrices and graph delay algorithms demonstrate the utility of the approach, and the remaining challenges
  • Keywords
    integrated circuit design; integrated circuit modelling; probability; CAD tools; affine model; confidence intervals; graph delay algorithms; improved interval algebra; pessimistic interval bounds; probabilistic intervals; probabilistic model; range uncertainties; sparse matrices; unifying optimization formulation; Algebra; Circuit analysis; Delay; Monte Carlo methods; Probability; Semiconductor device modeling; Statistics; Time domain analysis; Timing; Uncertainty; Algorithms; DFM; Intervals; algorithms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Design Automation Conference, 2006 43rd ACM/IEEE
  • Conference_Location
    San Francisco, CA
  • ISSN
    0738-100X
  • Print_ISBN
    1-59593-381-6
  • Type

    conf

  • DOI
    10.1109/DAC.2006.229201
  • Filename
    1688782