DocumentCode :
2469322
Title :
Bayesian marginal model selection for low-rank sources
Author :
Radich, Bill M. ; Buckley, Kevin M.
Author_Institution :
Seagate Technol., Bloomington, MN, USA
fYear :
1998
fDate :
14-16 Sep 1998
Firstpage :
268
Lastpage :
271
Abstract :
We consider a Bayesian evidence approach to model parameter estimation and order selection. We specifically consider multiple-source parameter estimation and model order selection using data from an array of general configuration. A source observation is assumed to be of time-varying orientation in a low-rank subspace of the observation space. The conditional maximum likelihood (CML) framework is assumed, where we eliminate the large number of unknown nuisance parameters (i.e., signal amplitudes/orientations and noise power) by marginalization using noninformative priors which are proper as required for model order selection. We compare this Bayesian evidence-based parameter estimator to the CML estimator and a previously proposed Bayesian estimator
Keywords :
Bayes methods; array signal processing; inference mechanisms; maximum likelihood estimation; time-varying systems; Bayesian evidence approach; conditional maximum likelihood; general array; low-rank subspace; marginal model selection; multiple-source parameter estimation; noninformative priors; order selection; source observation; time-varying orientation; Bayesian methods; Brain modeling; Electroencephalography; Integrated circuit modeling; Maximum likelihood estimation; Narrowband; Parameter estimation; Position measurement; Sensor arrays; Traffic control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal and Array Processing, 1998. Proceedings., Ninth IEEE SP Workshop on
Conference_Location :
Portland, OR
Print_ISBN :
0-7803-5010-3
Type :
conf
DOI :
10.1109/SSAP.1998.739386
Filename :
739386
Link To Document :
بازگشت