DocumentCode :
2469755
Title :
Improvement of accuracy and speed of a commercial AFM using positive position feedback control
Author :
Mahmood, I.A. ; Moheimani, S.O.R.
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW, Australia
fYear :
2009
fDate :
10-12 June 2009
Firstpage :
973
Lastpage :
978
Abstract :
The atomic force microscope (AFM) is a device capable of generating topographic images of sample surfaces with extremely high resolutions down to the atomic level. It is also being used in applications that involve manipulation of matter at a nanoscale. Early AFMs were operated in open loop. As a result, they were susceptible to piezoelectric creep, thermal drift, hysteresis nonlinearity and scan-induced vibration. These effects tend to distort the generated image. The distortions are often minimized by limiting the scanning speed and range of the AFMs. Recently a new generation of AFMs has emerged that utilizes position sensors to measure displacements of the scanner in three dimensions. These AFMs are equipped with feedback loops that work to minimize the adverse effects of hysteresis, piezoelectric creep and thermal drift on the obtained image using standard PI controllers. These feedback controllers are often not designed to deal with the highly resonant nature of an AFM´s scanner, nor with the cross-coupling between various axes. In this paper we illustrate the drastic improvement in accuracy and imaging speed that can be obtained by proper design of a feedback controller. Such controllers can be incorporated into most modern AFMs with minimal effort since they can be implemented in software with the existing hardware.
Keywords :
PI control; atomic force microscopy; control system synthesis; feedback; position control; atomic force microscope; feedback controllers design; feedback loops; hysteresis nonlinearity; open loop; piezoelectric creep; position sensors; positive position feedback control; scan-induced vibration; standard PI controllers; thermal drift; topographic images; Adaptive control; Atomic force microscopy; Creep; Distortion measurement; Feedback control; Force control; Hysteresis; Image generation; Image resolution; Surface topography;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2009. ACC '09.
Conference_Location :
St. Louis, MO
ISSN :
0743-1619
Print_ISBN :
978-1-4244-4523-3
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2009.5160335
Filename :
5160335
Link To Document :
بازگشت