Title :
Optimal information bit encoding of linear block codes
Author :
Chen, Houshou ; Coffey, John T.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA
Abstract :
This paper examines the problem of finding an optimal generator matrix of a linear block code C over a binary symmetric channel in the quiet region (i.e., crossover probability p→0) when the goal is to minimize the probability of an information bit error. We present an infinite class of cyclic codes whose optimal generator matrices are nonseparable. The problem is linked to whether the minimum weight codewords form a basis of C
Keywords :
binary codes; block codes; cyclic codes; error statistics; linear codes; matrix algebra; binary symmetric channel; bit error probability minimisation; crossover probability; cyclic codes; linear block codes; minimum weight codewords; nonseparable matrices; optimal generator matrix; optimal information bit encoding; Block codes; Computer science; Decoding; Encoding; Error probability; Linear code; Noise generators; Symmetric matrices; Vectors;
Conference_Titel :
Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
0-7803-5000-6
DOI :
10.1109/ISIT.1998.708823