Title :
Timing-constrained and voltage-island-aware voltage assignment
Author :
Wu, Huaizhi ; Wona, M.D.R. ; Liu, I-Min
Author_Institution :
Cadence Design Syst., Inc., San Jose, CA
Abstract :
Multi-Vdd is an effective method to reduce both leakage and dynamic power. A key challenge in a multi-Vdd design is to limit the design cost and the demand for level shifters. This can be tackled by grouping cells of different supply voltages into a small number of voltage islands. Recently, an elegant algorithm is proposed for generating voltage islands that balance the power versus design cost tradeoff under performance requirement, according to the placement proximity of the critical cells. One prerequisite is an initial voltage assignment at the standard cell level that meets timing. In this paper, we present a novel method to produce quality voltage assignment, which not only meets timing but also forms good proximity of the critical cells to provide with a smooth input. The algorithm is based on effective delay budgeting and efficient computation of physical proximity by Voronoi diagram. Our experiments on real industrial designs show that our algorithm leads to 25-75% improvement in the voltage island generation, with the computation time only linear to the design size
Keywords :
budgeting; computational geometry; costing; power generation economics; Voronoi diagram; delay budgeting; dynamic power reduction; industrial designs; leakage reduction; low power electronics; multiVdd design; placement proximity; timing-constrained voltage assignment; voltage island generation; voltage-island-aware voltage assignment; Algorithm design and analysis; Cost function; Delay; Design optimization; Low voltage; Physics computing; Power generation; Power measurement; Space exploration; Timing; Algorithms; Design; Low power; Voltage assignment; Voronoi diagram;
Conference_Titel :
Design Automation Conference, 2006 43rd ACM/IEEE
Conference_Location :
San Francisco, CA
Print_ISBN :
1-59593-381-6
DOI :
10.1109/DAC.2006.229227