DocumentCode :
2471818
Title :
Segmentation of periodically moving objects
Author :
Azy, Ousman ; Ahuja, Narendra
Author_Institution :
Beckman Inst. for Adv. Sci. & Technol., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
We present a new approach for the identification and segmentation of objects undergoing periodic motion. Our method uses a combination of maximum likelihood estimation of the period, and segments moving objects using correlation of image segments over an estimated period of interest. Correlation provides the best locations of the moving objects in each frame. Segmentation tree provides the image segments at multiple resolutions. We ensure that children regions and their parent regions have the same period estimates. We show results of testing our method on real videos.
Keywords :
image resolution; image segmentation; maximum likelihood estimation; image segments; maximum likelihood estimation; multiple resolutions; periodically moving object segmentation; segmentation tree; Filtering; Harmonic analysis; Image motion analysis; Image segmentation; Maximum likelihood detection; Maximum likelihood estimation; Motion analysis; Motion estimation; Statistical analysis; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4760949
Filename :
4760949
Link To Document :
بازگشت