DocumentCode :
2472366
Title :
A non-parametric scale-based corner detector
Author :
Bellavia, F. ; Tegolo, D. ; Valenti, C.
Author_Institution :
Dipt. di Mat. e Applicazioni, Univ. degli Studi di Palermo, Palermo, Italy
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
This paper introduces a new Harris-affine corner detector algorithm, that does not need parameters to locate corners in images, given an observation scale. Standard detectors require to fine tune the values of parameters which strictly depend on the particular input image. A quantitative comparison between our implementation and a standard Harris-affine implementation provides good results, showing that the proposed methodology is robust and accurate. The benchmark consists of public images used in literature for feature detection.
Keywords :
affine transforms; edge detection; feature extraction; image classification; image enhancement; image reconstruction; image segmentation; Harris-affine corner detector algorithm; Hessian-affine detector; feature extraction; image classification; image contrast enhancement; image mosaicing; multiple-views reconstruction; nonparametric scale-based image corner detector; Application software; Autocorrelation; Computer vision; Covariance matrix; Detectors; Eigenvalues and eigenfunctions; Entropy; Image edge detection; Image segmentation; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4760976
Filename :
4760976
Link To Document :
بازگشت