DocumentCode :
2475206
Title :
Time-series clustering by approximate prototypes
Author :
Hautamäki, Ville ; Nykänen, Pekka ; Fränti, Pasi
Author_Institution :
Dept. of Comput. Sci. & Stat., Univ. of Joensuu, Joensuu, Finland
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
Clustering time-series data poses problems, which do not exist in traditional clustering in Euclidean space. Specifically, cluster prototype needs to be calculated, where common solution is to use cluster medoid. In this work, we define an optimal prototype as an optimization problem and propose a local search solution to it. We experimentally compare different time-series clustering methods and find out that the proposed prototype with agglomerative clustering followed by k-means algorithm provides best clustering accuracy.
Keywords :
approximation theory; optimisation; pattern clustering; search problems; time series; approximate prototype; cluster medoid; local search solution; optimization problem; time-series data clustering; Bioinformatics; Clustering algorithms; Clustering methods; Computer science; Euclidean distance; Image processing; Prototypes; Shape; Speech processing; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761105
Filename :
4761105
Link To Document :
بازگشت