Title :
Visual tracking based on weighted subspace reconstruction error
Author :
Tao Zhou ; Junhao Zhang ; Kai Xie ; Jie Yang ; Xiangjian He
Author_Institution :
Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., Shanghai, China
Abstract :
It is a challenging task to develop an effective and robust visual tracking method due to factors such as pose variation, illumination change, occlusion, and motion blur. In this paper, a novel tracking algorithm based on weighted subspace reconstruction error is proposed. We first compute the discriminative weights by sparse construction error with template dictionary consisted of positive and negative samples, and then confidence map for candidates is computed through subspace reconstruction error. Finally, the location of the target object is estimated by maximizing the decision map which is combined discriminative weights and subspace reconstruction error. Furthermore, we use the new evaluation criterion to verify the robustness of the current tracking result, which can reduce the accumulated error effectively. Experimental results on some challenging video sequences show that the proposed algorithm performs favorably against seven state-of-the-art methods in terms of accuracy and robustness.
Keywords :
image reconstruction; image sequences; object tracking; video signal processing; confidence map; decision map; sparse construction error; target object location estimation; template dictionary; video sequences; visual tracking algorithm; weighted subspace reconstruction error; Computer vision; Dictionaries; Image reconstruction; Robustness; Target tracking; Visualization; discriminative weights; sparse representation; subspace reconstruction error; visual tracking;
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
DOI :
10.1109/ICIP.2014.7025092