DocumentCode :
2478202
Title :
Unsupervised clustering using hyperclique pattern constraints
Author :
Yuchou Chang ; Dah-Jye Lee ; Archibald, J. ; Hong, Yi
Author_Institution :
Dept. of Electr. & Comput. Eng., Brigham Young Univ., Provo, UT, USA
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
A novel unsupervised clustering algorithm called hyperclique pattern-KMEANS (HP-KMEANS) is presented. Considering recent success in semi-supervised clustering using pair-wise constraints, an unsupervised clustering method that selects constraints automatically based on Hyperclique patterns is proposed. The COP-KMEANS framework is then adopted to cluster instances of data sets into corresponding groups. Experiments demonstrate promising results compared to classical unsupervised k-means clustering.
Keywords :
pattern clustering; unsupervised learning; hyperclique pattern K-means constraint; unsupervised clustering algorithm; Cleaning; Clustering algorithms; Clustering methods; Computer science; Data analysis; Data mining; Hidden Markov models; Humans; Partitioning algorithms; Pattern recognition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761252
Filename :
4761252
Link To Document :
بازگشت