DocumentCode :
2478840
Title :
Improving Bayesian Network parameter learning using constraints
Author :
De Campos, Cassia P. ; Ji, Qiang
Author_Institution :
Rensselaer Polytech. Inst., Troy, NY
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
This paper describes a new approach to unify constraints on parameters with training data to perform parameter estimation in Bayesian networks of known structure. The method is general in the sense that any convex constraint is allowed, which includes many proposals in the literature. Driven by a maximum entropy criterion and the imprecise Dirichlet model, we present a constrained convex optimization formulation to combine priors, constraints and data. Experiments indicate benefits of this framework.
Keywords :
belief networks; convex programming; learning (artificial intelligence); maximum entropy methods; parameter estimation; Bayesian network parameter learning; constrained convex optimization; convex constraint; imprecise Dirichlet model; maximum entropy criterion; parameter estimation; Bayesian methods; Closed-form solution; Constraint optimization; Entropy; Maximum likelihood estimation; Parameter estimation; Probability distribution; Proposals; Random variables; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761287
Filename :
4761287
Link To Document :
بازگشت