DocumentCode :
2481474
Title :
Video attention: Learning to detect a salient object sequence
Author :
Liu, Tie ; Zheng, Nanning ; Wei Ding ; Yuan, Zejian
Author_Institution :
Res. Lab., IBM China, Beijing
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
We study video attention by detecting a salient object sequence from video segment. We formulate salient object sequence detection as energy minimization problem in a conditional random field framework, while static and dynamic salience, spatial and temporal coherence, global topic model are well defined and integrated to identify a salient object sequence. Dynamic programming algorithm is designed to resolve a global optimization, with a rectangle to represent each salient object. We validate our approach on a large number of video segments with the labeled salient object sequence.
Keywords :
dynamic programming; video signal processing; conditional random field framework; dynamic programming algorithm; energy minimization; global optimization; global topic model; salient object sequence; spatial coherence; temporal coherence; video attention; video segment; Algorithm design and analysis; Coherence; Content based retrieval; Design optimization; Dynamic programming; Energy resolution; Heuristic algorithms; Object detection; Spatial resolution; Switches;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761406
Filename :
4761406
Link To Document :
بازگشت