DocumentCode :
2482618
Title :
Tensor Power Method for Efficient MAP Inference in Higher-order MRFs
Author :
Semenovich, Dimitri ; Sowmya, Arcot
Author_Institution :
Univ. of New South Wales, Sydney, NSW, Australia
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
734
Lastpage :
737
Abstract :
We present a new efficient algorithm for maximizing energy functions with higher order potentials suitable for MAP inference in discrete MRFs. Initially we relax integer constraints on the problem and obtain potential label assignments using higher-order (tensor) power method. Then we utilise an ascent procedure similar to the classic ICM algorithm to converge to a solution meeting the original integer constraints.
Keywords :
Markov processes; inference mechanisms; maximum likelihood estimation; random processes; tensors; MAP inference; discrete MRF; higher-order tensor power method; integer constraints; tensor power method; Approximation algorithms; Approximation methods; Belief propagation; Inference algorithms; Manganese; Markov processes; Tensile stress; Belief Propagation; Higher Order Power Method; MAP inference; MRF;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.185
Filename :
5596033
Link To Document :
بازگشت