DocumentCode :
2482689
Title :
A metascalable computing framework for large spatiotemporal-scale atomistic simulations
Author :
Nomura, Ken-ichi ; Seymour, Richard ; Wang, Weiqiang ; Dursun, Hikmet ; Kalia, Rajiv K. ; Nakano, Aiichiro ; Vashishta, Priya ; Shimojo, Fuyuki ; Yang, Lin H.
Author_Institution :
Dept. of Comput. Sci., Univ. of Southern California, Los Angeles, CA, USA
fYear :
2009
fDate :
23-29 May 2009
Firstpage :
1
Lastpage :
10
Abstract :
A metascalable (or ldquodesign once, scale on new architecturesrdquo) parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflopsmiddotday of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).
Keywords :
computational complexity; divide and conquer methods; message passing; metacomputing; multi-threading; O(N) algorithms; critical section-free multithreading; data locality; embedded divide-and-conquer algorithm; large spatiotemporal-scale atomistic simulations; linear scaling algorithms; message passing; metascalable computing; multicore cluster; multipetaflops architectures; parallel computing; space-time-ensemble parallel approach; spatial locality; temporal locality; tunable hierarchical cellular decomposition parallelization; Algorithm design and analysis; Clustering algorithms; Computational modeling; Computer architecture; Concurrent computing; Message passing; Multicore processing; Multithreading; Parallel processing; Spatiotemporal phenomena;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on
Conference_Location :
Rome
ISSN :
1530-2075
Print_ISBN :
978-1-4244-3751-1
Electronic_ISBN :
1530-2075
Type :
conf
DOI :
10.1109/IPDPS.2009.5160992
Filename :
5160992
Link To Document :
بازگشت