DocumentCode :
2483247
Title :
A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach
Author :
Pasumarthy, Ramkrishna ; Van der Schaft, Arjan
Author_Institution :
Fac. of Electr. Eng., Math. & Comput. Sci., Twente Univ., Enschede
fYear :
2006
fDate :
13-15 Dec. 2006
Firstpage :
3984
Lastpage :
3989
Abstract :
We look into the problem of approximating a distributed parameter port-Hamiltonian system which is represented by a non-constant Stokes-Dirac structure. We here employ the idea where we use different finite elements for the approximation of geometric variables (forms) describing an infinite-dimensional system, to spatially discretize the system and obtain a finite-dimensional port-Hamiltonian system. In particular we take the example of a special case of the shallow water equations
Keywords :
approximation theory; computational fluid dynamics; distributed parameter systems; flow; multidimensional systems; distributed parameter port-Hamiltonian system; finite dimensional approximation; finite element approximation; geometric variables; infinite-dimensional system; nonconstant Stokes-Dirac structure; shallow water equations; Boundary conditions; Control systems; Distributed parameter systems; Finite element methods; Mathematics; Maxwell equations; Power system interconnection; Power transmission lines; Transmission line theory; USA Councils;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2006 45th IEEE Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
1-4244-0171-2
Type :
conf
DOI :
10.1109/CDC.2006.377022
Filename :
4177999
Link To Document :
بازگشت