DocumentCode :
2483581
Title :
Spherical 7-design in the 2n-dimensional Euclidean space
Author :
Sidelnikov, Vladimir M.
Author_Institution :
Moscow State Univ., Russia
fYear :
1998
fDate :
16-21 Aug 1998
Firstpage :
362
Abstract :
We consider a finite subgroup Θn of the group O(N) of orthogonal matrices, where N=2n, n=1, 2, ... . This group was defined in [4] and we use it to construct spherical designs in the 2n-dimensional Euclidean space RN. We prove that representations ρ1, ρ2 and ρ3 of the group Θn on the spaces of harmonic polynomials of degrees 1, 2 and 3 respectively are irreducible. This together with the earlier results [1, 3] imply that the orbit Θn,2x of any initial point x on the unit sphere SN-1 is a 7-design in the Euclidean space of dimension 2n
Keywords :
codes; group theory; matrix algebra; polynomials; Euclidean space; finite subgroup; group representations; harmonic polynomials; irreducible polynomials; orbit code; orthogonal matrices; spherical 7-design; spherical codes; unit sphere; Lattices; Veins;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
0-7803-5000-6
Type :
conf
DOI :
10.1109/ISIT.1998.708967
Filename :
708967
Link To Document :
بازگشت