DocumentCode :
2484561
Title :
A novel parameter estimation method based on PSOSQP optimization
Author :
Zhao, Dali ; Li, Xiaoguang ; Jin, Qibing
Author_Institution :
Inst. of Autom., Beijing Univ. of Chem. Technol., Beijing
fYear :
2008
fDate :
25-27 June 2008
Firstpage :
2996
Lastpage :
3000
Abstract :
The particle swam optimization (PSO) technique is an effective global convergence method, but its local search speed is slow. The sequential quadratic programming (SQP) method can solve a nonlinear programming problem quickly, but may be trapped into a local minimum. In this paper, a novel optimization method PSO-SQP by combining the PSO and SQP is proposed. In this method, PSO is employed for a global search. SQP is employed for a local minimum search in each PSO main loop to get the best group fitness particle. Then the PSO-SQP method is used in closed-loop parameter estimation. Several examples are simulated to illustrate effectiveness of the PSO-SQP method used in the parameter estimation. The results of simulations have demonstrated the effectiveness of the algorithms.
Keywords :
particle swarm optimisation; quadratic programming; search problems; PSO-SQP optimization; closed-loop parameter estimation; global convergence method; particle swam optimization; sequential quadratic programming; Automation; Chemical technology; Convergence; Feedback; Intelligent control; Optimization methods; Parameter estimation; Quadratic programming; Search methods; System testing; Closed-loop Parameter Estimation; Global Convergence; PSO; SQP;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on
Conference_Location :
Chongqing
Print_ISBN :
978-1-4244-2113-8
Electronic_ISBN :
978-1-4244-2114-5
Type :
conf
DOI :
10.1109/WCICA.2008.4593400
Filename :
4593400
Link To Document :
بازگشت