Title :
Multiple Sampling for Estimation on a Finite Horizon
Author :
Rabi, Maben ; Moustakides, George V. ; Baras, John S.
Author_Institution :
Inst. for Syst. Res., Maryland Univ., College Park, MD
Abstract :
We discuss some multiple sampling problems that arise in finite horizon real-time estimation when there is an upper limit on the number of allowable samples. Measuring estimation quality by the aggregate squared error, we compare the performances of the best deterministic, level-triggered and the optimal sampling schemes. We restrict the signal to be either a Wiener or an Ornstein-Uhlenbeck process. For the Wiener process, we provide closed form expressions and series expansions, whereas for the Ornstein Uhlenbeck process, procedures for numerical computation. Our results indicate that the best level-triggered sampling is almost optimal when the signal is stable
Keywords :
estimation theory; optimal control; series (mathematics); signal sampling; Ornstein-Uhlenbeck process; Wiener process; aggregate squared error; finite horizon real-time estimation; level-triggered sampling; multiple sampling; optimal sampling schemes; series expansions; Aggregates; Optimal control; Performance evaluation; Sampling methods; Signal design; Signal detection; Signal processing; Signal sampling; State estimation; USA Councils;
Conference_Titel :
Decision and Control, 2006 45th IEEE Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
1-4244-0171-2
DOI :
10.1109/CDC.2006.377336